Speculate-correct error bounds for k-nearest neighbor classifiers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error minimizing algorithms for nearest neighbor classifiers

Stack Filters define a large class of discrete nonlinear filter first introduced in image and signal processing for noise removal. In recent years we have suggested their application to classification problems, and investigated their relationship to other types of discrete classifiers such as Decision Trees. In this paper we focus on a continuous domain version of Stack Filter Classifiers which...

متن کامل

Evolving edited k-Nearest Neighbor Classifiers

The k-nearest neighbor method is a classifier based on the evaluation of the distances to each pattern in the training set. The edited version of this method consists of the application of this classifier with a subset of the complete training set in which some of the training patterns are excluded, in order to reduce the classification error rate. In recent works, genetic algorithms have been ...

متن کامل

Using a Genetic Algorithm for Editing k-Nearest Neighbor Classifiers

The edited k-nearest neighbor consists of the application of the k-nearest neighbor classifier with an edited training set, in order to reduce the classification error rate. This edited training set is a subset of the complete training set in which some of the training patterns are excluded. In recent works, genetic algorithms have been successfully applied to generate edited sets. In this pape...

متن کامل

Nearest Neighbor Classifiers

The 1-N-N classifier is one of the oldest methods known. The idea is extremely simple: to classify X find its closest neighbor among the training points (call it X ,) and assign to X the label of X .

متن کامل

Probably correct k-nearest neighbor search in high dimensions

A novel approach for k-nearest neighbor (k-NN) searching with Euclidean metric is described. It is well known that many sophisticated algorithms cannot beat the brute-force algorithm when the dimensionality is high. In this study, a probably correct approach, in which the correct set of k-nearest neighbors is obtained in high probability, is proposed for greatly reducing the searching time. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2019

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-019-05814-1